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Abstract. We extend the architecture of the Hopfield network, such that it can recognise 
transformed versions of a set of learnt prototypes. As an example we construct a network 
which can generalise over all topologically equivalent representations of graphs or images. 
The construction is based on two coupled networks: a Hopfield network to store and 
retrieve patterns and a preprocessor to transform the input data. 

It has been shown that simple models of neutral networks operate as efficient associative 
memories [ 13. Therefore the question arises: whether these models also display some 
of the enormous computational abilities of natural neural networks in the brain of 
higher vertebrates. The error corrections during associative information retrieval 
involve only simple computations. In fact, a conventional computer needs a time of 
at most O( N 2 )  to restore an incomplete or noisy input pattern with N bits in a memory 
with N stored patterns [2]. On the other hand, many of the higher cognitive functions 
must involve intrinsically hard computational problems. 

As an example we discuss here a neural network which is designed to recognise 
the topological features of images. After the network has learnt p prototype graphs, 
it will be able to recognise an image which is topologically the same as one of the 
learnt graphs. To perform this task the network generates isomorphisms of the input 
graph and simultaneously tries to retrieve one of the learnt graphs. We first discuss 
how a network can perform either of these two tasks-graph matching and graph 
retrieval-seperately. We then go on and couple these two networks-one for each 
task-such that graph recognition is achieved by the combined system. 

An image is represented on a model retina (or input layer) R with sites numbered 
i = 1,2, .  . . , N. In the context of pattern recognition, the image may be any preprocessed 
version of the original picture. The topology of R defines the class of subgraphs under 
consideration. Two cases will be of particular interest in the following: a two- 
dimensional lattice and an infinite-dimensional lattice, i.e. a set of N fully connected 
points. The elementary pixel of the image consists of a black or white line segment 
which joins two sites. In this way every image becomes a subgraph of the model retina 
and will be represented by its N x N adjacency matrix G [3]. The element G, = 1 if 
i and j are neighbours (i.e. joined by a black link) and G, = 0 otherwise. To compare 
the topological features of two graphs GI and G2 we map nodes of GI into those of 
G2 by a homeomorphism, i.e. a map which conserves the neighbourhood relationships 
between nodes [3]. Two images are considered equal if their graphs are isomorphic, 
i.e. all their nodes can be mapped homeomorphically. 
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The Euclidean distance d of the adjacency matrices of two graphs G, and G2 is 

dZ( G,,  G2) = f Tr( G, - G2)2 = N (  GI)  + N (  G2) - o( G I ,  G2) 

where N (  GI)  is the total number of links in the graph GI and o( G I ,  G2) = Tr( GI G2) 
denotes the overlap of the two graphs G, and G2. The distance as well as the overlap 
depend on the labelling of the graphs on the lattice. For a lattice of N points there 
are N! different labellings r( i )  of the lattice points i = 1,  2, . . . , N. These transforma- 
tions T can be represented by an N x N matrix t i , a=r ( i )  with one element 1 in each 
row and each column. To compare the topology of two graphs we either use the 
maximum of the overlap R = maxTwT, wT = Tr(G,, T+G,T) or the minimum of the 
distance D2 = minTd2(Gl,  T+G2T) taken over all lattice transformations T. R equals 
twice the maximal number of links, which can be mapped homeomorphically. G2 is 
a subgraph of G, if R(G,,  G2) =2N(G2)  G2N(G,)  and D = 0 if two graphs are 
isomorphic. 

The task of subgraph matching is defined as follows. Find the transformation T, 
which either minimises the distance or maximises the overlap of two graphs G, and 
G2. Subgraph matching is known to be a hard computational problem [4]. One 
possible approach to such problems is simulated annealing [5], which attempts to find 
near-optimal solutions. In this procedure one introduces a noise level A-’ .  The system 
evolves stochastically in the space of transformations T, such that it relaxes to a 
stationary distribution exp(AoT). The quantity of interest is the ground-state configur- 
ation. 

The task of subgraph matching can also be formulated for a neural network [2,6]. 
One identifies the elements of the transformation T with N 2  neurons ti ,  E {0,1} whose 
activity is restricted by Zi  ti, = 1 and H, ti, = 1.  These constraints can be enforced by 
appropriate penalties, which have to be added to the cost function 

defined as 

Hence the total cost function for subgraph matching [2,6] is H = - U (  T’G, T, G2) + H p .  
The synaptic couplings are determined by the input graphs G, and G,. 

We want to construct a Hopfield network, which can store and retrieve graphs, 
which are subgraphs of a set of N fully connected points. We associate a neuron 
Sap E {0,1} to every link between two points cy and /3 (cy, p = 1 ,2 . .  . . , N). The 
N (  N - 1)/2 neurons interact with the Hamiltonian 

Here the summation over ( a p )  runs over distinct links and h,, denotes the threshold 
field of neuron Sap. The synaptic couplings JePvS are determined by the graphs to be 
learnt, for example 

Jepy6 = 6 & 6 $ 6 ( C - 1 ) v p  
U,, = 1 

with (& =2G& - 1 E {-1, -1) and 

[7]. The network can store and retrieve p = N (  N - 1)/2 graphs. 
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In the problem of pattern recognition one may be interested in an ensemble of 
graphs, which are subgraphs of a two-dimensional lattice and hence are sparse. The 
mean activity of such a graph becomes extremely low for large graphs: X,,,, G &  = 
O( N ) .  It may then be useful to constrain the activity of the neurons accordingly [8] 
and make use of the threshold fields ha, for storing purposes [9]. The coupling constant 
Jo should be scaled, such that the cost function is proportional to the number of active 
neurons, Jo = 1 / 2  N,  ( N ,  = N (  N - 1) /2  for an infinite-dimensional lattice and N ,  = 
N z / 2  for a two-dimensional lattice with coordination number z ) .  The global minima 
of this network are the learnt patterns [lo]. 

The task is to construct a network, which learns p prototype graphs and is able to 
perform one of the following functions. 

(i) Recognise isomorphic graphs. The network is presented with an image, which 
is not equal to any of the learnt ones, but a displaced, rotated and/or homeomorphically 
distorted version of a learnt one. The network shall retrieve the learnt graph, which 
is isomorphic to the presented image. 

(ii) Recognise subgraphs. The presented image is an incomplete version of a learnt 
graph and may be additionaly distorted as above. The network shall recognise that 
learnt graph which contains the presented image as subgraph. 

These tasks can be performed by three coupled networks: a receptor layer R, a 
memory layer M and a preprocessor P. The layer R is the input layer described above. 
An image is represented on R by the state of N (  N - 1 ) / 2  neurons G, E (0 , l )  which 
are not updated during the recognition process. The memory layer is a fully connected 
Hopfield network, defined by (2). The preprocessor consists of N 2  neurons ti, E (0, l}, 
which realise the transformation T between the lattice points of the receptor R and 
the memory layer M (see figure 1). 

1 2 1 3 4  

P .  t .  = i a  

M .  sap = 

Figure 1. Network with receptor or input layer R, preprocessor P and memory M. Shown 
on the right are the neural activity patterns and the hardwiring. 

The graphs to be learnt { G ; }  are defined on the receptor layer R. The preprocessor 
transforms these into neural activity patterns [& = E i J  ti.,t,!”(2G;- 1) in the memory 
layer. These are stored in the synapses of M with an appropriate learning rule. The 
P layer has no special ‘learning state’. Its configuration {ti ,} can be different for every 
learnt pattern if one wants to use the full storage capacity of the memory. 
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After the learning stage has been completed, an image G is presented on R and 
the network has to recognise it either as isomorphic to or as a subgraph of one of the 
learnt graphs. This can be achieved in a cooperation of the two networks: the 
preprocessor P for graph matching and the memory M for graph retrieval. Graph 
recognition is equivalent to finding the absolute minima of the total cost function 

for isomorphic graph matching. For subgraph matching the first term of H has to be 
replaced by - U (  T+GT, S ) .  The search for the global minima has to be done in the 
space of all { S a p ,  t , , , } ,  while the neurons of the input layer R are taken to be quenched 
in the configuration {Gy}. The global minima of H M  are the learnt graphs. For 
isomorphic graph matching H is minimised if the distance between the input graph 
and a stored graph vanishes. Hence the global minima of H are Z,, r,at,pG!, = Sap = 
(&& + 1)/2. For subgraph matching H is minimised if all links of the input graph G 
can be mapped homeomorphically onto one of the stored graphs. 

The Hamiltonian for graph recognition contains interactions of up to four neurons 
(see figure 1). For technical realisations, this has the advantage that the hardwiring 
of the network is independent of the learnt and presented graphs [ 2 ] .  

The dynamic evolution of the network should be such that the global minima of 
H are stationary states in the absence of noise. The structures of metastable states 
and their barriers depend on the details of the dynamics. For example, if we choose 
the transposition of two lattice points as an elementary change of T, then one can 
easily convince oneself that metastable states with high barriers are present. A simple 
example is given below: 

1 2 4 5  1 2 4 5  
*-*-*-* *-*-*-*. 

I * 3  
I 
* 3  

For the efficiency of the procedure it is important to exclude moves, which cannot 
change the cost function, i.e. transpositions of lattice points, which do not involve at 
least one node of G. To allow the system to escape from a metastable state one can 
either introduce noise [5] or relax the constraints to smooth the energy landscape [2]. 
Here we consider the first alternative and keep the constraints hard ( p  >.> 1). A possible 
dynamics consists of a four spin-flip of the neurons {tin} of P and a two spin-flip of 
the neurons { S u p }  of the memory M. In this way the activity of the networks can be 
dynamically constrained. If the flip rates are chosen according to detailed balance, 
then the system relaxes to the stationary distribution exp( - p H ) ,  where p- '  is the noise 
level. The question for a dynamics which leads to a satisfactory performance of the 
network cannot be answered in general. We expect it to be dependent on the ensemble 
of graphs under consideration. The tuning of flip rates, noise level and constraint 
parameters p and A has to be investigated numerically in the context of practical 
applications. 

Nevertheless it is instructive to consider the limiting case of infinite A for which 
the cost function takes on the form 
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with cup = Z,, t,urJpG,,. Equation (4) looks like a Hopfield Hamiltonian, but note that 
the configurations { a U P }  are restricted to isomorphisms of the input graph G. To assess 
the effect of the noise we estimate the entropy and the energy for large graphs. The 
total number of transformations T is N ! .  Hence they contribute a term of O( N In N )  
to the entropy. The total cost function is extensive, i.e. proportional to the number of 
links in the input graph, If the input layer R is a two-dimensional lattice, then the 
system will always be in the high-temperature phase, provided the noise level remains 
finite in the thermodynamic limit (a similar problem occurs in other OptimisationJasks, 
see, e.g., [ 113). To balance energy and entropy one has to choose a noise level p = p In N 
with 6 = O( 1) as N goes to infinity. If the input layer is an infinite-dimensional lattice, 
the system will always be in the low-temperature phase unless the noise level is scaled 
as /3 = ( p  In N ) /  N with l? again of order one. With the appropriate scaling we expect 
that the behaviour of the network with low noise level (6 > 1) is qualitatively the same 
as without noise. In the low-temperature phase the overlap of the transformed input 
graph T+GT with one of the learnt graphs G” scales with the number of active neurons: 

( W ) t h = c  G$3 C(t,,t,p)thG,,=O(N,). 
QP t, 

This implies that the order parameter for graph recognition is non-zero, i.e. the input 
graph has been recognised as one of the stored graphs. (Here (. . denotes the average 
with the distribution -exp(-PH).) 

In the case of a fully connected input layer the order parameter 

is the extremum of the free energy 

1 
-- In Tr n [ 1 + (2aaP - 1) tanh(Pm * 
Nap ( U P )  

The threshold field has been chosen such that h,, = E(vs) JaPVs. The first two terms 
are those of a standard Hopfield model with a transition temperature pc’ = 1. The 
constraint on cap destroys the global inversion symmetry of H so that the expansion 
off  contains even as well as odd powers of m. Hence the transition is expected to be 
discontinuous. 

For the purpose of illustration we consider a small system, where f can be calculated 
analytically. As an example we consider an input layer of four fully connected points. 
Suppose that the network has learnt three topologically different graphs and we use 
an isomorphism of one of them as input (see figure 2 ) .  The free energies fy for the 
pure states m, = m&, ( n  = 1,2,3) are shown in figure 2 for p = 0.81. For small p, m = 0 
is the globally stable state and for p 5 0.8 there is a discontinuous transition to a phase, 
where isomorphic graphs are recognised. Note that the graph represented by { - ‘ $ L P }  
is isomorphic to G2,  whereas { -&} is isomorphic to G 3 ,  This implies fi( m )  =f,( -m) 
andfXm) = f 3 ( - m ) .  

Recently Bienenstock and von der Malsburg [6] have also suggested a network for 
invariant pattern recognition. They represent the image by a distribution of features 
on the nodes of a graph with fixed topology. We disagree with their Hamiltonian for 
graph retrieval because it possesses a large number of additional global minima which 
are mixtures of the learnt patterns. A further basic difference to our approach lies in 
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71.U.7K 
51 62 53 I n p u t  

Figure 2. Free energies for fl =0.81. The learnt graphs (G,, G,,  G , )  and the input graph 
are shown on the bottom. 

the interpretation of the dynamic variables. Whereas we represent a graph as an activity 
configuration of neurons, their dynamic variables are interpreted as synapses. Their 
learning rule consists in local dynamic constraints on the synaptic activity which are 
not represented in the Hamiltonian. 

In the problem of subgraph recognition, we have focused on topological features 
of images. In practical applications one often is also interested in a smaller group of 
transformations than homeomorphisms, for example translations and rotations. A 
two-dimensional retina does not only define neighbourhod relations but also metrical 
properties, like distances and angles. These can be mapped onto neural activity patterns 
if the transformations T-realised in the preprocessor P-are restricted to rotations 
and translations, too. Note that this does not require a change of the architecture of 
the network. 
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